首页 > 作文 > 高中生作文 > 高三作文

爱奇艺在线制作电子表格视频

admin 高三作文 2020-04-22 22:55:18 考查方程

篇一:《edu_ecologychuanke1477649334》

江西省南昌市2015-2016学年度第一学期期末试卷

(江西师大附中使用)高三理科数学分析

试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础

试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察

在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析

1.【试卷原题】11.已知A,B,C是单位圆上互不相同的三点,且满足ABAC,则ABAC的最小值为( )



1

41B.

23C.

4D.1

A.

【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。解法较多,属于较难题,得分率较低。



【易错点】1.不能正确用OA,OB,OC表示其它向量。



2.找不出OB与OA的夹角和OB与OC的夹角的倍数关系。



【解题思路】1.把向量用OA,OB,OC表示出来。

2.把求最值问题转化为三角函数的最值求解。

22

【解析】设单位圆的圆心为O,由ABAC得,(OBOA)(OCOA),因为



,所以有,OBOAOCOA则OAOBOC1

ABAC(OBOA)(OCOA)

2

OBOCOBOAOAOCOA

OBOC2OBOA1



设OB与OA的夹角为,则OB与OC的夹角为2

11

所以,ABACcos22cos12(cos)2

22

1

即,ABAC的最小值为,故选B。

2

【举一反三】

【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD中,已知

AB//DC,AB2,BC1,ABC60 ,动点E和F分别在线段BC和DC上,且,1BEBC,DFDC,则AEAF的最小值为.

9

【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何

运算求AE,AF,体现了数形结合的基本思想,再运用向量数量积的定义计算AEAF,体

现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】

11

【解析】因为DFDC,DCAB,

92

11919CFDFDCDCDCDCAB,

9918

29 18

AEABBEABBC,1919AFABBCCFABBCABABBC,

1818

19192219AEAFABBCABBCABBC1ABBC

181818



2117172919199

 421

cos120

921818181818

21229

当且仅当. 即时AEAF的最小值为

92318

2.【试卷原题】20. (本小题满分12分)已知抛物线C的焦点F1,0,其准线与x轴的

交点为K,过点K的直线l与C交于A,B两点,点A关于x轴的对称点为D. (Ⅰ)证明:点F在直线BD上; (Ⅱ)设FAFB

8

,求BDK内切圆M的方程. 9

【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l的方程为ym(x1),致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。 【解题思路】1.设出点的坐标,列出方程。 2.利用韦达定理,设而不求,简化运算过程。 3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知K1,0,抛物线的方程为y24x

则可设直线l的方程为xmy1,Ax1,y1,Bx2,y2,Dx1,y1, 故

xmy1y1y24m2

整理得,故 y4my402

y4xy1y24

2

y2y1y24

则直线BD的方程为yy2xxx2即yy2

x2x1y2y14

yy

令y0,得x121,所以F1,0在直线BD上.

4

y1y24m2

(Ⅱ)由(Ⅰ)可知,所以x1x2my11my214m2,

y1y24

x1x2my11my111 又FAx11,y1,FBx21,y2

故FAFBx11x21y1y2x1x2x1x2584m,

2

2

则84m





84

,m,故直线l的方程为3x4y30或3x4y30 93{爱奇艺在线制作电子表格视频}.

故直线

BD的方程3x

30或3x30,又KF为BKD的平分线,

3t13t1

,故可设圆心Mt,01t1,Mt,0到直线l及BD的距离分别为54y2y1

————-10分 由

3t15

3t143t121

 得t或t9(舍去).故圆M的半径为r

953

2

14

所以圆M的方程为xy2

99

【举一反三】

【相似较难试题】【2014高考全国,22】 已知抛物线C:y2=2px(p>0)的焦点为F,直线5

y=4与y轴的交点为P,与C的交点为Q,且|QF|=4(1)求C的方程;

(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.

【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y2=4x.

(2)x-y-1=0或x+y-1=0. 【解析】(1)设Q(x0,4),代入

y2=2px,得

x0=,

p

8

8pp8

所以|PQ|,|QF|=x0=+.

p22p

p858

由题设得+=p=-2(舍去)或p=2,

2p4p所以C的方程为y2=4x.

(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0). 代入y2=4x,得y2-4my-4=0. 设A(x1,y1),B(x2,y2), 则y1+y2=4m,y1y2=-4.

故线段的AB的中点为D(2m2+1,2m), |AB|m2+1|y1-y2|=4(m2+1).

1

又直线l ′的斜率为-m,

所以l ′的方程为x+2m2+3.

m将上式代入y2=4x,

4

并整理得y2+-4(2m2+3)=0.

m设M(x3,y3),N(x4,y4),

则y3+y4y3y4=-4(2m2+3).

m

4

22

2故线段MN的中点为E22m+3,-,

mm

|MN|=

4(m2+12m2+1

1+2|y3-y4|=.

mm2

1

由于线段MN垂直平分线段AB,

1

故A,M,B,N四点在同一圆上等价于|AE|=|BE|=,

211

22从而+|DE|=2,即 444(m2+1)2+

2222

2m++22=

mm

4(m2+1)2(2m2+1)

m4

化简得m2-1=0,解得m=1或m=-1, 故所求直线l的方程为x-y-1=0或x+y-1=0.

三、考卷比较

本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。题型分值完全一样。选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

篇二:《电子表格视频教程》

篇一:全套的excel视频教程

全套的excel视频教程,包你学会

难得的excel教程集珍藏版,简单明了,包你学会

照片名称:自动筛选

照片名称:在excel中字符替换照片名称:在excel中直接编辑“宏”照片名称:在excel中为导入外部数据照片名称:在excel中行列快速转换篇二:推荐-为什么excel视频教程你应该选我们

推荐-为什么excel视频教程你应该选我们

概述一句话:我比其他线上很多视频教程作者更牛x,更重要我懂你的需求,而且我满足你的需求。

我不仅让你感觉我excel牛x,我视频也让你感觉其实你也可以惊呆领导,亮瞎同事。 作者薛奔,电商数据分析师,有极丰富的excel数据处理分析经验,1万小时的excel专家。(早期网络大量解疑+持续工作实战需求)

微软excel专家认证,精通函数透视图表之间的综合应用,略懂vba。 excel全套视频教程共5大系列,全面系统,高清演示,细致清晰。

excel学习主要是工作需求和预备需求,所以不应该是盲目滴学习,作者薛奔(sharpen)按照个人的基础现状和需求推荐适合的产品。虽然对我来说,你买全套我是赚最多的,但购买过的会员都知道,我并不是推荐他们一定要买全套学习。

考虑一个人学习很孤单,不好坚持,也不好提问。所以2012年10月7日开始创建了教程会员群,至今2年半,不考虑自动退群的用户,目前是483人(14.04.24最新数据)。 人群覆盖10多个行业,电商,物流,财务,人力金融行政等,地区除青海没客户外,其他都有了,包括西藏。海外都有10多个客户。深受大家的好评,帮助大家真正节省了数据处理时间。 本店教程top3热销购买链接:最热销居然是全套教程,不可思议吧。

excel全套系列视频教程:点击购买

excel函数实战教程:函数实战

excel数据透视表实战:透视表实战从最后一张图来看,会员群的人数增长速度在加快,第二季才过一半而已。

最近我对购买过我的会员说,学好excel是需要时间的。正如上海到北京走路需要几月,路费为0,而高铁只要6小时,费用500左右。你买我教程学习也是如此,你绝对比那些还在自己耗时瞎摸或买垃圾低价视频的人学习和领悟快的多。 最后附上一些购买过教程的会员评

摘自:excel报表顾问_电商excel数据分析视频教程篇三:excel免费经典视频教程下载(不需要再另找教程)

excel免费经典视频教程下载(不需要再另找教程)

本教程由excel专家亲自授课,讲解深入浅出,能够使初学者在短短几天时间内快速掌握大量的excel知识与技巧,从而达到快速入门与精通的目的。这些教程都来自于各位财务专家的日常工作实践,与工作紧密相结合,很容易学会,学会了就用得上,值得珍藏。如果觉得看书枯燥乏味的朋友,一定要下载视频教程才能学得会excel了。这套教程把工作中的方方面面都讲解到了,从此再也不需要到处找教程了。

本文分三部分:一、如何找到视频教程下载地址;二、如何保存下载地址;三、该教程的具体内容。

一、、如何找到视频教程下载地址,分三步就可以完成:

1、百度搜索:支票套打王

2、进入到excel支票套打王官方网站首页

3、在首页上方有一个栏目“excel入门与精通”,点击进去就可以下载。

三、该教程的具体内容。

1、献给初学者:循序渐进学excel系列视频课程。

①第一集:成为高手的捷径

系统地介绍了学习excel的最佳方法与体验,分享了众多高手成长中的经验,是不可多得的学习秘技。

②第二集:数据录入与处理入门

介绍了excel的最基本也是最常用的录入编辑功能应用,包含常规方法以及众多绝招,还有大多数经常忽视但其实非常重要的高效方法。

③第三集:函数与公式入门

介绍了excel的最核心的计算功能——公式与函数的学习与使用方法,由浅入深,从原理到实例,帮助大家快速进入函数与公式的大门。

④第四集:图表与图形入门

介绍了excel的图表图形功能,重点讲解的商务图表的优点、原理与制作思路,excel图表的常用制作方法、编辑技巧以及美化技巧,还分享了各类高级excel图表的应用。 ⑤第五集:数据分析入门

介绍了excel的各种数据分析功能,包括排序、分类汇总、筛选、数据透视表以及更多高级分析功能的应用方法,既讲述了常规应用,也介绍了许多分析技巧,结合典型案例,帮助大家快速掌握excel数据分析功能

⑥第六集:宏与vba入门

介绍了excel的自动化功能:宏与vba。通过实例讲述为何需要在excel中使用宏,如何利用宏帮助自己减轻工作负担,excel vba的知识体系以及如何学习vba,帮助大家快速掌握excel中这一强大的二次开发功能。

刚才这6集内容讲得很详细,限于篇幅,不可能将剩余的100多集内容全部列举出来。因为内容实在太多了,此篇文章写不下。要了解其余讲座的内容,俗话说百闻不如一见,最好的办法是亲自去excel支票套打王官方网站看一下,有哪些资料可以下载。总而言之,只要你能够想象出来的excel视频教程,这里都有下载。

篇三:《edu_ecologychuanke1477645773》

江西省南昌市2015-2016学年度第一学期期末试卷

(江西师大附中使用)高三理科数学分析

试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础

试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察

在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析

1.【试卷原题】11.已知A,B,C是单位圆上互不相同的三点,且满足ABAC,则ABAC的最小值为( )



1{爱奇艺在线制作电子表格视频}.

41B.{爱奇艺在线制作电子表格视频}.

23C.

4D.1

A.

【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。解法较多,属于较难题,得分率较低。



【易错点】1.不能正确用OA,OB,OC表示其它向量。



2.找不出OB与OA的夹角和OB与OC的夹角的倍数关系。



【解题思路】1.把向量用OA,OB,OC表示出来。

2.把求最值问题转化为三角函数的最值求解。

22

【解析】设单位圆的圆心为O,由ABAC得,(OBOA)(OCOA),因为



,所以有,OBOAOCOA则OAOBOC1

ABAC(OBOA)(OCOA)

2

OBOCOBOAOAOCOA

OBOC2OBOA1



设OB与OA的夹角为,则OB与OC的夹角为2

11

所以,ABACcos22cos12(cos)2

22

1

即,ABAC的最小值为,故选B。

2

【举一反三】

【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD中,已知

AB//DC,AB2,BC1,ABC60 ,动点E和F分别在线段BC和DC上,且,1BEBC,DFDC,则AEAF的最小值为.

9

【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何

运算求AE,AF,体现了数形结合的基本思想,再运用向量数量积的定义计算AEAF,体

现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】

11

【解析】因为DFDC,DCAB,

92

11919CFDFDCDCDCDCAB,

9918

29 18

AEABBEABBC,1919AFABBCCFABBCABABBC,

1818

19192219AEAFABBCABBCABBC1ABBC

181818



2117172919199

 421

cos120

921818181818

21229

当且仅当. 即时AEAF的最小值为

92318

2.【试卷原题】20. (本小题满分12分)已知抛物线C的焦点F1,0,其准线与x轴的

交点为K,过点K的直线l与C交于A,B两点,点A关于x轴的对称点为D. (Ⅰ)证明:点F在直线BD上; (Ⅱ)设FAFB

8

,求BDK内切圆M的方程. 9

【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l的方程为ym(x1),致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。 【解题思路】1.设出点的坐标,列出方程。 2.利用韦达定理,设而不求,简化运算过程。 3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知K1,0,抛物线的方程为y24x

则可设直线l的方程为xmy1,Ax1,y1,Bx2,y2,Dx1,y1, 故

xmy1y1y24m2

整理得,故 y4my402

y4xy1y24

2

y2y1y24

则直线BD的方程为yy2xxx2即yy2

x2x1y2y14

yy

令y0,得x121,所以F1,0在直线BD上.

4{爱奇艺在线制作电子表格视频}.

y1y24m2

(Ⅱ)由(Ⅰ)可知,所以x1x2my11my214m2,

y1y24

x1x2my11my111 又FAx11,y1,FBx21,y2

故FAFBx11x21y1y2x1x2x1x2584m,

2

2

则84m





84

,m,故直线l的方程为3x4y30或3x4y30 93

故直线

BD的方程3x

30或3x30,又KF为BKD的平分线,

3t13t1

,故可设圆心Mt,01t1,Mt,0到直线l及BD的距离分别为54y2y1

————-10分 由

3t15

3t143t121

 得t或t9(舍去).故圆M的半径为r

953

2

14

所以圆M的方程为xy2

99

【举一反三】

【相似较难试题】【2014高考全国,22】 已知抛物线C:y2=2px(p>0)的焦点为F,直线5

y=4与y轴的交点为P,与C的交点为Q,且|QF|=4(1)求C的方程;

(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.

【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y2=4x.

(2)x-y-1=0或x+y-1=0. 【解析】(1)设Q(x0,4),代入

y2=2px,得

x0=,

p

8

8pp8

所以|PQ|,|QF|=x0=+.

版权声明

本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:https://www.wuliandi.com/gaozhong/gszw/215481.html

作文素材网 - 让教育更简单

https://www.wuliandi.com/

新ICP备18000016号-1

Powered By 作文素材网版权所有