首页 > 作文 > 初中生作文 > 初一作文

初一关于角的数学证明题

admin 初一作文 2020-04-23 00:10:18 如图求证

篇一:《七年级数学 三角形 证明题》

 三角形与平行线相交线的套用

1.已知:四边形ABCD中, AC、BD交于O点, AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.求证:AD=BC

 多次证明三角形全等得出角或边相等

2.(1)已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,∠1=∠2, 求证:∠B=∠C

A B(2)已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。

F

E

 可用多种方法证明 DC 3.已知:如图,AD=AE,AB=AC,BD、CE相交于O. 求证:OD=OE.

 通过全等三角形得出角相等利用等量代换或补角余角关系得出结论

4.已知:如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC。

A

E

 B

DC如果直接证明线段或角相等比较困难时,可以将线段、角扩大(或缩小)或将线段、角分解为几部分,再分别证明扩大(或缩小)

的量相等;或证明被分成的几部分对应相等,这是证明线段、角相等的一个常用手段。

5.已知:如图,AB=DE,BC=EF,CD=FA,∠A= ∠D。求证:∠B= ∠E。

 通过高构造全等三角形

6.(1)已知:如图,△ABC中,D是BC的中点,∠1=∠2,求证:AB=AC。

(2)如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°。求证:DE=DF。

BAEFD

 通过添加辅助线构造全等三角形直接证明线段(角)相等

7.已知:如图AB=AD,CB=CD,

(1)求证:∠B=∠D.

(2)若AE=AF

试猜想CE与CF的大小关系并证明.

 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

8.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF。

求证:AC=BF。

 通过构造相等的直线,运用三角形全等得出两直线相等,再通过等量代换得出结论。

9、如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC交BC于D。求证:AB+BD=AC。

A

BDC

 “倍长中线法”添加辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法

(1)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.求证:DE=DF. 求证:BE=CF.

(2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点.

篇二:《全等三角形证明题精选(初中数学)》

1已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。求证:AF=CE。

C D

E

F

A B

2已知,如图,AB⊥AC,AB=AC,AD⊥AE,AD=AE。求证:BE=CD。

A C

E

3、已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。求证:EB=ED。

E

4、已知:如图,AB、CD交于O点,CE//DF,CE=DF,AE=BF。求证:∠ACE=∠BDF。

F B

A E O

D

5. 已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。求证:BF⊥AC。

A

F

C B D

6. 已知:如图,△ABC和△A'B'C'中,∠BAC=∠B'A'C',∠B=∠B',AD、A'D'分别是∠BAC、∠B'A'C'的平分线,且AD=A'D'。求证:△ABC≌△A’B’C’。

A' A

2

D' D B C B'

7.已知:如图,AB=CD,AD=BC,O是AC中点,OE⊥AB于E,OF⊥D于F。求证:OE=OF。

C'

O

C

A

E B

8.已知:如图,AC⊥OB,BD⊥OA,AC与BD交于E点,若OA=OB,求证:AE=BE。

O

C{初一关于角的数学证明题}.

9.已知:如图,AB//DE,AE//BD,AF=DC,EF=BC。求证:△AEF≌△DBC。

E

C

B A

10.如图,B,E分别是CD、AC的中点,AB⊥CD,DE⊥AC求证:AC=CD

11如图,已知AD是△ABC的中线, DE⊥AB于E, DF⊥AC于F, 且BE=CF, 求证:(1)AD是∠BAC的平分线;(2)AB=AC.

F

B

C

12如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.

C

A B E

13在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于

G,求证:AE=BG.

C D

14如图,已知△ABC是等边三角形,∠BDC=120º,求证

AD=BD+CD

15如图,在△ABC中,AD是中线,BE交AD于F,且AE=EF,求证AC=BF

16如图,在△ABC中,∠ABC=100º,AM=AN,CN=CP,求∠MNP的度数

17如图,在△ABC中,AB=BC,M,N为BC边上的两点,并且∠BAM=∠CAN,MN=AN,求∠MAC的度数

.

18如图,已知∠BAC=90º,AD⊥BC, ∠1=∠2,EF⊥BC, FM⊥AC,说明FM=FD的理由

19如图A、B、C、D四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明.

E

AEBF①ACED,②ABCD,③ ,④ EAGFBG

DG

20如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连结BD,AE, 并延长AE交BD于F.求证:(1)△ACE≌△BCD(2)直线AE与BD互相垂直

篇三:《初中数学三角形证明题经典题型训练》

2015年05月03日初中数学三角形证明组卷

一.选择题(共20小题) 1.(2015•涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是( )

ABC、∠BCD的角平分线,则图中的等腰三角形有( )

3.(2014秋•西城区校级期中)如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S△ABD:S△ACD=( )

于点D,交AC于点E,连接BE,则∠CBE的度数为( )

第1页(共30页)

,则∠B的度数为( )

6.(2014•山西模拟)如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于( )

7.(2014•雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60

°的角的个数是( )

8.(2014秋•腾冲县校级期末)如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是( )

第2页(共30页){初一关于角的数学证明题}.

9.(2014春•栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于( )

10.(2014秋•博野县期末)△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=( )

11.(2013秋•潮阳区期末)如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=6

,则PF的长为( )

第3页(共30页)

12.(2013秋•马尾区校级期末)如图,△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,

△ACD的周长为12cm,则△ABC的周长是( )

13.(2013秋•西城区期末)如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于( )

′全等的条件是( )

15.(2014

秋•淄川区校级期中)如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )

16.(2014秋•万州区校级期中)如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于( )

第4页(共30页)

17.(2014秋•泰山区校级期中)如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是( )

18.(2014秋•晋江市校级月考)如图,点P是△ABC内的一点,若PB=PC,则( )

19.(2013•河西区二模)如图,在∠ECF的两边上有点B,A,D,BC=BD=DA,且∠ADF=75

°,则∠ECF的度数为( )

第5页(共30页)

篇四:《七年级数学全等三角形证明精选题》

先做几道基础题:

1、如图(1):AD⊥BC,垂足为D,BD=CD。

求证:△ABD≌△ACD。

A

BC(图1)D

2. 如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。

求证:△ABE≌△DCF。

F

ABD8)C

E

3、如图(10)∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。 求证:AB=AC。

E

BC(图10)

版权声明

本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:https://www.wuliandi.com/chuzhong/cyzw/225158.html

作文素材网 - 让教育更简单

https://www.wuliandi.com/

新ICP备18000016号-1

Powered By 作文素材网版权所有